Independent component analysis and clustering improve signal-to-noise ratio for statistical analysis of event-related potentials.
نویسندگان
چکیده
OBJECTIVE To evaluate the effectiveness of a new method of using Independent Component Analysis (ICA) and k-means clustering to increase the signal-to-noise ratio of Event-Related Potential (ERP) measurements while permitting standard statistical comparisons to be made despite the inter-subject variations characteristic of ICA. METHODS Per-subject ICA results were used to create a channel pool, with unequal weights, that could be applied consistently across subjects. Signals derived from this and other pooling schemes, and from unpooled electrodes, were subjected to identical statistical analysis of the N170 own-face effect in a Joe/No Joe face recognition paradigm wherein participants monitored for a target face (Joe) presented amongst other unfamiliar faces and their own face. Results between the Joe, unfamiliar face and own face conditions were compared using Cohen's d statistic (square root of signal-to-noise ratio) to measure effect size. RESULTS When the own-face condition was compared to the Joe and unfamiliar-face conditions, the channel map method increased effect size by a factor ranging from 1.2 to 2.2. These results stand in contrast to previous findings, where conventional pooling schemes failed to reveal an N170 effect to the own-face stimulus (Tanaka JW, Curran T, Porterfield A, Collins D. The activation of pre-existing and acquired face representations: the N250 ERP as an index of face familiarity. J Cogn Neurosci 2006;18:1488-97). Consistent with conventional pooling schemes, the channel map approach showed no reliable differences between the Joe and Unfamiliar face conditions, yielding a decrease in effect size ranging from 0.13 to 0.75. CONCLUSIONS By increasing the signal-to-noise ratio in the measured waveforms, the channel pool method demonstrated an enhanced sensitivity to the neurophysiological response to own-face relative to other faces. SIGNIFICANCE By overcoming the characteristic inter-subject variations of ICA, this work allows classic ERP analysis methods to exploit the improved signal-to-noise ratio obtainable with ICA.
منابع مشابه
Shearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملAcoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملAnalyzing and Visualizing Single-Trial Event-Related Potentials
Event-related potentials (ERPs), are portions of electroencephalographic (EEG) recordings that are both timeand phase-locked to experimental events. ERPs are usually averaged to increase their signal/noise ratio relative to non-phase locked EEG activity, regardless of the fact that response activity in single epochs may vary widely in time course and scalp distribution. This study applies a lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 118 12 شماره
صفحات -
تاریخ انتشار 2007